Sarasvati River and Chronology: Simulations using Planetarium Software

B. N. Narahari Achar
Professor of Physics
University of Memphis, Memphis TN 38152 USA

I. Introduction

The theme of the conference is the Sarasvati River and Hindu Civilization. One aspect of the study in understanding the role of the great river is to develop some chronological markers. The Mahābhārata war was fought on the banks of this river\(^1\) and the pilgrimage of Balarāma at the time of the war on the banks of the river Sarasvati provide some historical elements needed. References to astronomical events in the epic Mahābhārata have been recognized as observed and not computed. These astronomical events can be simulated using planetarium software and thus provide a basis for dating these astronomical events. The dating of the events in the Mahābhārata war correlates well with the dating of the archaeological explorations along the river. The paper presents the results of an ongoing research over the past few years regarding the date of the Mahābhārata war, the progress of the research has been reported in several publications including monographs. The present article is based on three stages of development represented in these publications\(^2\).

Correlation can also be made with dating of astronomical events described in other Vedic texts such as saihita and brāhmaṇa texts. Astronomy is considered to be

\(^1\) The boundaries of kurusëtra are described in the verse: dāksiṇena sarasvatyā uttareṇa dṛṣṭadvatim | ye vasanti kurukṣetre te vasanti trivishupe || (Mbh. III. 81. 175)

the foremost of sciences, and has played an important role in India since the Vedic times. Astronomy was essential in determining the proper times for performing the ritual yajña. It is generally accepted that the rgjyotisa (RJ) recension of Vedāṅgajyotiṣa (VJ) is the earliest codified text of astronomy of India. This paper also addresses the state of Astronomy in India from the earliest times to Vedāṅgajyotiṣa. The accounts of history of astronomy in ancient India that are currently available³ have to be modified in view of the developments discussed below.

II. Vedāṅgajyotiṣa

It is universally accepted that RJ is the earliest text of astronomy in Ancient India. The knowledge codified in this text is attributed to sage Lagadha, but the composition of the text which has preserved this knowledge is attributed to Śuci, a disciple of Lagadha. RJ is more like a pocket reference rather than a detailed treatise of astronomy and gives all the knowledge of astronomy essential for the performance of Vedic rituals, codified in a form akin to the style of śūtras in 36 ślokas, easy for memorization, but sometimes difficult for understanding. It is declared to be the science of time, as its primary purpose is to determine the proper time for the performance of Vedic rituals. Some of the important concepts of RJ include tithi, nakṣatra (defined as a division of the Ecliptic), anīśa, kalā, aṣṭaka and parvan. Units of time, and measurement of time ātru, ayana, and adhimāsa and a five year period called yuga. Pingree⁴, in his eagerness to show that VJ was derived from Mesopotamian origin, assigned a date of ~400 BCE for it, while Sastry⁵ and others had assigned a date of ~1200 BCE, based on the reference in RJ that the winter solstice occurred at Dhaniṣṭha, and on the identification of Dhaniṣṭha with β-Delphini. The author has argued⁶ that every astronomical concept in RJ can be traced to ṛgveda and other Vedic texts. For the concept of tithi, for example, there are several well known quotations from ṛgveda which show that the year nominally of 360 days is

⁴ Pingree (1973)
⁵ Sastry, Kuppanna, T. S.,(1985) Vedāṅga Jyotiṣa of Lagadha, Indian National Science Academy, New Delhi.
divided into 12 months of 30 days each, thus alluding to *tithi*, the 30th part of a lunar month:

\[
dvādaśāraṁ na hi tajjarāya varvarti cakraṁ paridyāṃtasya
\]
\[āputra agne mithunāso atra saptaśatāna vimśatiśca taśtuḥ\]

RV I.164.11

The moon is the one who shapes the year: *samānāṁ māsa ākṛtiḥ* | RV X. 85.5 |

Aitareya Brāhmaṇa (32.10) defines the *tithi* and the Taittirīya Brāhmaṇa gives the names of the fifteen *tithes* of the waxing phase:

\[etānuvākau pūrvapakṣasyāhorātrāṁ nāmadheyāni\] | TB 3.10.1.1-3 |

and the names of the fifteen *tithes* of the waning phase:

\[etānuvākā parapakṣasyāhorātrāṁ nāmadheyāni\] | TB 3.10.1.2 |

The concepts of equinoxes and solstices, the scheme of *adhimāsa*, the five year *yuga* system can all be traced to Vedic sources. For example, Aitareya Brāhmaṇa (18.22) shows the knowledge of the equinox and the period between two solstices:

\[yathā vai puruṣa evaṁ viṣuvāṃstasya yathā dakṣiṇo ’rdha evaṁ pūrvo ’rdho
viṣuvatoyathottiro ’rdha evamuttarā ’rdho viṣuvatasmāduttara ityācakṣate\]

The practice of inserting an intercalary month is adduced to in

\[Veda māso dhṛtvato dvādaśa praįvataḥ | vedā ya upajāyate\] | RV I. 25.8|

II. b Nakṣatra system is already known in *ṛgVeda*

Nakṣatras, variously translated as asterisms or lunar mansions with an enduring list of 27 (sometimes 28) in number have been the hallmark of Indian astronomy. They refer to stars, which lie near the path of the sun or the moon as markers, while in RJ they refer to the divisions of the ecliptic. Explicit mention of the names of only a few of the 27 *nakṣatras* is found in *ṛgVeda* although complete list of 27 (or 28) *nakṣatras* can be found in other *sāṁhitā* and *Brāhmaṇa* texts. This has led scholars to believe that not all the *nakṣatras* were known at the time of *ṛgVeda* and the development of the full list occurred later. The author has shown that the entire list of *nakṣatras* can be found in *ṛgveda*, contrary to the scholarly pronouncements that such an entire list came to be recognized only at the time of taittiriya *sāṁhitā*.

II. c. Names of the months caitra etc. already known in *ṛgVeda*

7 Achar (1998a)
One of the characteristic features of the Hindu calendar is the naming of the month on the basis of the nakṣatra near which a full moon may be taken to have occurred. These are the well known caitra, vaiśākha, jyeṣṭha etc. The names of the months in the Vedic texts, however, are madhu, mādhava, śukra, śuci, nabhas, nabhasya, iṣa ūrjā, sahas, sahasya, tapas and tapasya. Some scholars have conjectured that the names of the months based on the nakṣatras was not known during the saṁhitā times, but came into vogue much later. In fact Dixit⁹ surmises that this scheme came into vogue when the vernal equinox actually took place in caitra. Using the Planetarium software, the author has shown that there is no basis for this argument to establish a chronology. The scheme of naming the months called the caitrādi system has also been traced⁹ to ṛgveda on the basis of the connection between Yajña and the important role of agni in it.

III. Time and its measurement

Astronomy is an observational science. RJ propounds a five year luni-solar year called the Yuga, comprising of ten ayanas, subdivided intoṛtu, māsa, ardhamāsa, ahorātra, kalā, muhūrta, kāṣṭā. These concepts can be traced to Vedic sources, for instance, in Mahānārāyaṇapaniṣat,

kalāmuḥuḥṛtuḥ kāṣṭāścāhorātronśca sarvaśaḥ
ardhamāsa māsa ṛtavasaṁvatsaraśca kalpantāṁ

The method of measuring time with a water clock can be traced to Atharvaveda¹¹, and the method of Gnomon can also be traced to Vedic sources. In short, the entire astronomical knowledge of vedāṅga jyotiṣa is traceable to ṛgveda. The related question of kaliyuga, manvantara, kalpa etc will be discussed in a separate paper.

IV. Identification of the Vedic nakṣatra-s

Although in RJ the nakṣatras refer to divisions of the ecliptic, and the names of the divisions correspond to bright asterisms also known by the same names, there must have

been a time when only the asterisms and not the divisions of the ecliptic were used as the markers for the observation of movements of the sun and the moon. It is essential to identify the Vedic nakṣatras (the bright stars) with their modern names, for the lists that are available in the literature are not satisfactory, some of the asterisms being more than 30° away from the ecliptic and could not have been used as markers for the motion of the sun and the moon. The author has used the simulations using the planetarium software, SkyMap Pro, of nearly 900 new moons and full moons occurring around 2297 BCE, when kṛṣṭikās (identified with Pleiades) were on the equator and around 2220 BCE, when the vernal equinox occurred at kṛṣṭikas and has produced 12 a table for identification of the nakṣatras, which is reproduced below. This identification is based on the view of the sky as the Vedic people themselves would have seen as simulated by the planetarium software. On the new moon days and full moon days, there is absolutely no question about the relative positions of the sun and the moon, and hence of the nakṣatra, which describes the moon’s position. The details of the identification procedure can be obtained from the reference cited above. The planetarium software produces the view of the sky by an extrapolation of the positions of the stars in a modern catalogue. The stars identified as a particular nakṣatra will therefore retain the identity. This is in contrast to the procedure adopted by Pingree 13, where the polar coordinates of stars given in a Siddhānta text is first converted to equatorial coordinates, then extrapolated to modern epochs to compare with the coordinates of stars in a modern catalogue and then make the identification.

The present list is believed to be the correct one as it is based on the view of the sky the Vedic people them selves would have observed. It agrees with most of the stars in the list given in the Report of the Calendar Reform Committee 14, but there are six cases, where there is disagreement. The new identification is based on stars, which are very close to the ecliptic and hence better suited as markers for the motion of the sun and the moon. Besides, the new identification easily explains a controversy 15 that had plagued the nakṣatra system, namely classification into deva and yama nakṣatras.

15 Narahari Achar (2002b)
V. Date of Vedāṅga Jyotiṣa

The author has recently shown16 that the date for the Lagadha recension of vedāṅga jyotiṣa must be revised to about 1800 BCE, rather than the previously accepted date of 1200 BCE. The date of vedāṅga jyotiṣa, as discussed by Sastry17, is based on the calculation of the time when winter solstice occurred at Dhaniṣṭha. The date of 1200 BCE is based on the identification of Dhaniṣṭha with β-Delphini according to the old identification scheme derived from the yogatāras of the Siddhāntas, and may not correspond to what the Vedic people themselves had observed. Based on the identification scheme proposed by the author in Table 1, Dhaniṣṭha corresponds to δ-Capricorni. Figure 1 shows the star map for Delhi on January 3, 1752 BCE, the day of winter solstice. It is clearly seen to be the month of Māgha in figure 2, as per the description in RJ verses 5 and 6. It can be noted that β-Delphini is more than 30° away from the Ecliptic and could not be a marker star, where as δ-Capricorni is right close to the Ecliptic and would be suitable as a marker star. Thus it follows that the date of Lagadha recension of Vedāṅga Jyotiṣa is to be dated around 1800 BCE. That there must have been versions of Vedāṅga Jyotiṣa much older than the Lagadha recension, as for example that followed at the time of the Mahābhārata war.

17 Sastry (1985)
Table 1. Identification of Vedic nakṣatras^+^

<table>
<thead>
<tr>
<th>Nakṣatras</th>
<th>No. of stars</th>
<th>Identification of the Principal star</th>
<th>Presiding Deity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RCRC</td>
<td>Present</td>
<td></td>
</tr>
<tr>
<td>kṛttika</td>
<td>6</td>
<td>η-Tau</td>
<td>Agni</td>
</tr>
<tr>
<td>rohini</td>
<td>1</td>
<td>α-Tau</td>
<td>prajāpati</td>
</tr>
<tr>
<td>mṛgaśīra</td>
<td>3</td>
<td>λ-Ori</td>
<td>Soma</td>
</tr>
<tr>
<td>ārdrā</td>
<td>1</td>
<td>α-Ori</td>
<td>Rudra</td>
</tr>
<tr>
<td>punarvasu</td>
<td>2</td>
<td>β-Gem</td>
<td>Aditi</td>
</tr>
<tr>
<td>puṣya</td>
<td>1</td>
<td>δ-Cnc</td>
<td>Bṛhaspati</td>
</tr>
<tr>
<td>āśleṣa</td>
<td>6</td>
<td>ε-Hya</td>
<td>Sarpa</td>
</tr>
<tr>
<td>makhā</td>
<td>6</td>
<td>α-Leo</td>
<td>Pitṛ</td>
</tr>
<tr>
<td>pūrvapahlguṇi</td>
<td>2</td>
<td>δ-Leo</td>
<td>aryamā</td>
</tr>
<tr>
<td>uttarapahlguṇi</td>
<td>2</td>
<td>β-Leo</td>
<td>Bhaga</td>
</tr>
<tr>
<td>hasta</td>
<td>5</td>
<td>δ-Crv</td>
<td>savitā</td>
</tr>
<tr>
<td>citrā</td>
<td>1</td>
<td>α-Vir</td>
<td>Indra</td>
</tr>
<tr>
<td>svāti</td>
<td>1</td>
<td>α-Boo</td>
<td>vāyu</td>
</tr>
<tr>
<td>viśākha</td>
<td>2</td>
<td>α-Lib</td>
<td>indrāṇi</td>
</tr>
<tr>
<td>anūrādhā</td>
<td>4</td>
<td>δ-Sco</td>
<td>Mitra</td>
</tr>
<tr>
<td>jyeṣṭhā</td>
<td>1</td>
<td>α-Sco</td>
<td>Indra</td>
</tr>
<tr>
<td>mūla</td>
<td>7</td>
<td>λ-Sco</td>
<td>Pitṛ</td>
</tr>
<tr>
<td>pūrvvāṣādha</td>
<td>4</td>
<td>δ-Sgr</td>
<td>āpah</td>
</tr>
<tr>
<td>uttarvāṣādha</td>
<td>4</td>
<td>σ-Sgr</td>
<td>Viśvedevāḥ</td>
</tr>
<tr>
<td>śravaṇa</td>
<td>3</td>
<td>α-Aql</td>
<td>Viṣṇu</td>
</tr>
<tr>
<td>dhanīṣṭha</td>
<td>5</td>
<td>β-Del</td>
<td>Vasu</td>
</tr>
<tr>
<td>śatabhiṣa</td>
<td>1</td>
<td>λ-Aqr</td>
<td>Indra</td>
</tr>
<tr>
<td>pūrvābhādra</td>
<td>2</td>
<td>α-Peg</td>
<td>ajaekapāt</td>
</tr>
<tr>
<td>uttarābhādra</td>
<td>2</td>
<td>γ-Peg</td>
<td>Ahirbudhnya</td>
</tr>
<tr>
<td>revati</td>
<td>1</td>
<td>ζ-Pis</td>
<td>Pāṣā</td>
</tr>
<tr>
<td>aśvini</td>
<td>2</td>
<td>β-Ari</td>
<td>Aśvin</td>
</tr>
<tr>
<td>bharani</td>
<td>3</td>
<td>41-Ari</td>
<td>yama</td>
</tr>
</tbody>
</table>

^+ List taken from Achar (2002b)

* These identifications differ from the usual list. These stars are brighter and closer to the ecliptic and are natural choice as markers of the motion of the son and the moon.
Figure 1. Winter Solstice in 1752 BCE
Figure 2. Full Moon after the Winter Solstice in 1752 BCE
VI. Date of Śatapatha Brāhmaṇa

It is a well known fact that there are many references to astronomical phenomena contained in the Brāhmaṇa texts and in fact these references have been used in the past by scholars such as Tilak\(^{18}\) and Dikshit\(^{19}\) to determine the dates of the events mentioned in these texts. A prime example of such investigations is the dating of the Śatapatha Brāhaṇa by Dikshi on the basis of the following lines referring to Kṛttikās:

\[
\text{etā ha vai prācyai diśo na cyavante…} \quad \text{SB (II.1.2.3)}
\]

“and again they do not move away from the eastern quarter” (Tr. Eggeling\(^{20}\))

\[
\text{ami hy uttarā hi saptarśayah udyanti purā etāḥ…..SB(II.1.2.4)}
\]

“these latter, the seven ṛṣis rise in the north and they (the Kṛttikās) in the east” (Tr. Eggeling\(^{3}\))

These lines occur in the second brāhmaṇa of the first adhyāya of the second kāṇḍa of SB, in connection with choosing a suitable time for agnyādhāna, the establishment of the ritual fires for the first time by a householder. It is suggested that the new householder should establish the traditional gārhapatiya and the āhavaiya fires on the day of Kṛttika naṣatra, for their presiding deity is agni. The Kṛttikās never swerve from the east and they alone consist of many stars. He who performs agnyādhāna on the day of Kṛttikā is blessed with ‘abundance’ and a ‘steadfast family’. But, the second line quoted above argues against this proposition; for, Saptarśis, who were married to Kṛttikās are constantly separated from the latter as they rise only in the east, while the Saptarśis stay in the north, implying a similar fate befalling the new householder. However, counter arguments are presented and finally, it is argued that Kṛttikās are the most auspicious, but some other nakṣatras are also suggested as equally auspicious for the purpose of agnyādhāna.

The astronomical importance of these lines was recognized by Dikshit, who interpreted “they do not move away from the eastern quarter” to mean that the ‘Kṛttikās rise exactly at the east point’ and used this fact to determine the date of SB as ~3000

\(^{19}\) Dikshit, S. B., (1895) “The age of Śatapatha Brāhmaṇa” Indian Antiquary, 24, pp 245-246
\(^{20}\) Eggeling, J., (1963), The Śatapatha Brāhmaṇa According to the Madhyandina School, Motilal Banarsidass, Delhi Part I, pp 282-283
BCE. With the advent of the so called planetarium software, Achar21 reinvestigated this particular issue by simulations of the view of the sky and confirmed that Dikshit was essentially correct in his dating of SB.

VII. Date of the Mah\=abh\=arata War

The importance of the date of the Mah\=abh\=arata war as the sheet-anchor22 for the chronology of Bh\=arata is too well known to be stated again. According to tradition, the war between the Kauravas and Pandavas took place at the transition between Dw\=apara and Kali yugas23, around 3000 BCE. However, ever since Western Scholars showed interest some hundred years ago in the epic and began to discuss its ‘historicity’, a lively debate (or rather a war of dates!) has been going on. While some scholars24 declare that the whole epic is a myth denying any historical truth to the story of the epic, many do believe25 that the war actually took place, but are divided as to the magnitude of the event and as to the date when it actually took place. Some scholars portray the epic as an exaggerated account of a family feud. A plethora of dates ranging from before 5000 BCE to around 1000 BCE have been proposed26 on the basis of estimates arrived at by using diverse methodologies and there appears to be no consensus for the date.

Among the diverse methodologies used, one methodology that is of special interest here is the one based on astronomical references (of which there are more than one hundred and fifty in number, and occur scattered throughout the epic). More than 40\% of all the articles27 (totaling more than 120 in number) dedicated to determining the date of the war, are based on the astronomical references. Although the astronomical references are scattered throughout the epic, most of them pertaining to the war occur in Udyogaparvan and Bhishmaparvan of the epic. Practically all scholars have

\begin{itemize}
\item 22 Kota Venkatachelam,(1954)The Plot in Indian Chronology, Arya vijnana, Vijayavada
\item 23 \textit{antare caiva sampr\=pte kali dv\=aparayorabh\=hit samantap\=an\=cake yuddha\=n kurup\=\=nava senayo}\=h ||MBh. I.2,9||
\item 25 Gupta S. P. and Ramachandran, K. S.,(1976), (editors) \textit{Mah\=abharata, Myth and Reality-Differing Views}, Agam Prakashan, Delhi; Sathe, S.,(1983) \textit{Search for the Year of the Bharata War}, Navabharati Publications, Hyderabad.
\item 26 Vedavyas, E (1986), \textit{Astronomical Dating of the Mah\=abharata War}, Agam Kala Prakashan, , Delhi. This is an exceptional book with an encyclopedic survey of literature on the topic. The date proposed in this work, 3138 BCE does not quite agree with the astronomical configurations as discussed here..
\item 27 Sathe (1983)
\end{itemize}
characterized the references in *Bhishmaparvan* as astrological omens28 and inconsistent and not suitable for a ‘scientific’ analysis. The earlier works using the astronomical references were tedious and calculations were done manually and hence chose to use only a couple of the astronomical events out of the many available in the epic. More recent studies have used the computer software ‘planetarium software’ and consequently have considered a much larger number sample of astronomical references in the epic. Still, until recently there appeared to be no convergence of the dates29. Some scholars have introduced30 ad hoc hypotheses in attempting to find some degree of coherence among the apparently ‘inconsistent’ astronomical references. It is clearly shown that the astronomical references are quite consistent and that such ad hoc hypotheses are totally unnecessary. The present article summarizes the results of a research conducted by the author over the past five years using planetarium software and the results have been published in several research publications. The research has shown conclusively that

(i) the astronomical references in the *Bhishmaparvan* are not merely ‘astrological effusions fit for mother goose’s tales’ (as once characterized by Professor Sen Gupta), but follow a Vedic tradition of omens and describe mostly comets and not planets as generally assumed,

(ii) the few true planetary references in this parvan are identical to those in *Udyogaparvan,*

(iii) These common references lead to a unique date for the war, 3067 BCE.

(iv) all other astronomical references in the epic are consistent with the date

(v) The date agrees with the date given earlier by Professor Raghavan and is consistent with the traditional date~3000 BCE.

28Sengupta, P. C., (1947) *Ancient Indian Chronology*, University of Calcutta, Calcutta.

29Kamath, S. U., (Bangalore, 2004), (Editor) The Date of the Mahabharata War Based on Astronomical Data, Mythic Society.

30It has been common to make ad hoc assumptions to fit whatever model one is proposing and to bring some degree of consistency in the astronomical references in the Epic. For example, Sengupta [14] assumed that the pair of eclipses had occurred two years before the war and later inserted into the text. Sharma (quoted by Iyengar in his paper in [15], p. 151) assumed that *Vyāsā* met *Dhṛtarāṣṭra* not just once on the eve of the war, but several times and the planetary positions refer to different times. Iyengar (in [15], p.167) assumed that part of the text in *Bhiṣmaparvan* actually belongs to *sabhāparvan.*
(vi) Using the planetarium software, it can be easily demonstrated that all other dates proposed by different authors are inconsistent with the planetary configurations referred to in (ii) above.

VII a. Astronomical References in Udyogaparvan

Krṣṇa’s mission for peace is so important that astronomical events in reference to that mission are recorded.

(i) Krṣṇa leaves for Hastināpura in the maitri muhūrta in the month of Kārtika on the day of Revatī nakṣatra.

(ii) On the way he halts at a place called Vṛkasthala and reaches Hastināpura on the day of Bharani nakṣatra.

(iii) The meetings and discussions for peace go on till the day of Pusya nakṣatra, when Duryodhana rejects all offers of peace. War becomes imminent.

(iv) Krṣṇa leaves Hastināpura on the day of Uttara Phālguna. Karṇa accompanies him in his chariot and has a long conversation with him.

(v) During the conversation Karṇa describes some omens he has seen that indicate a great harm to the Kuru family which include the following: śani is afflicting Rohinī, aṅgāraka has performed a retrograde motion before reaching Jyeṣṭhā and is prograde again having past Anūrādhā, the moon had lost all its luster on the full moon of Kārtika and a solar eclipse would appear to take place next new moon day.

(vi) At the end of the conversation, Krṣṇa sends a message to Bhīma and Droṇa through Karṇa that seven days from that day there is going to be an Amāvāsyā at Jyeṣṭhā and that war rituals be started on that day.

Except for Professor Sengupta, these astronomical references are generally agreed to be genuine and pertinent by most scholars. Professor Sengupta does not have “faith in the astrological omens” described by Karṇa in (v) above. However, he does believe that the reference to ‘jyeṣṭha amāvāsyā’ is extremely important, but considers the reference to two eclipses occurring within thirteen days eclipses as interpolation.

VII b. Astronomical References in Bhīṣmaparvan

Sage Vyāsa meets with Dhṛtarāṣṭra just prior to the war and describes the omens he has seen. Among these omens described in 76 verses in two chapters are some 40
astronomical references given in four different segments. These are some of the most misunderstood astronomical references. On a superficial reading, and assuming that the astrological references to *graha* pertain to planets as most scholars have done, the references appear to be confusing and contradictory. Since they also occur in four different segments, scholars have characterized them as unreliable and even as interpolations. But, by a careful analysis the author has shown that *Vyāsa* is very systematic in his description and follows a very genuine *Vedic* tradition of omens. The omens occur in four segments because, they pertain to four different aspects of the impending disaster: (a) an imminent war, (b) great harm to the *Kuru* family, (c) destruction of both armies and (d) disaster to the entire population. Most of the omens pertain to comets and not planets. The only true planetary positions are described in segment (b) as the omens describing harm to the *Kuru* family, they are identical to those described by *Karṇa* earlier in *udyogaparvan*. This is easily demonstrated, for example, by comparing the first segment of astronomical references in *Bhīṣma parvan*: Chapter 2. verses 20-23 with some selected *mantra*-s from *AtharvaVeda Pariśiṣṭha*.
“I observe the sun every day both at sunrise and sunset and have seen him as if encircled by long arms.”
“I see the sun surrounded by halos on all sides, halos which are tri-colored, dark in the middle and white and red towards the edge and accompanied by lightning.”
“I have been watching days and nights, the fierce sun, the moon and the stars shining incessantly and have been unable to distinguish between day and night. Surely this forebodes utter destruction.”

“On the full moon night of kṛttika, the moon with a fiery tinge was hardly visible, devoid of glory and the horizons were also of the same hue.”

“(In predicting war) one should always consider the line of clouds and halos around the sun and the moon and observe whether they appear red in color or not.”(64.5.7)

“Which are blue and red towards the edges and dark in the middle and accompanied by lightning.”(61.1.4)

“Whenever the sun is surrounded at sunrise and sunset by tri-colored clouds, it indicates a great calamity to the earth and royal families.”(61.1.15)

“The color of the moon at the time of an eclipse indicates a battle if it is red and disaster to cities and villages if it smoky or fiery.”(53.5.1-2)

It is clear that these are omens for an imminent war according to a Vedic tradition.

In the second segment, Vyāsa describes some omens, which forecast a great destruction, especially to the Kuru family:

rohiṇīṁ piḍayanneṣa stitho rājan śanaiśca raḥ/
vyāvṛttam laksma somasya bhaviṣyati mahabhayaṁ// MB(VI. 2. 32)

“Oh King, Saturn is harassing Aldebaran and the spot on the Moon has shifted from its position. Something terrible will happen.”

abhikṣṇaṁ kampate bhūmirkaiṁ rāhustathāgrasaṁ/
śveto grahasthāḥ citrāṁ samatikramya tiṣṭāti// MB(VI. 3. 11)
“The Earth is experiencing tremors intermittenty and Rahu (Moon’s Node) has seized the Sun. ṣvetagraha has transgressed Spica.”

These are identical to the omens described by Karṇa to Kiṣṇa in udyogaparvan.

Vyāsa describes in the third segment further indicators, in the form of comets, of the calamity to the entire army (senayoraśivain ghoraṁ…). He names specifically a number of comets, ṣveta, dhūmaketu, mahāgraḥa, paruṣa, pāvaka, dhūma, lohitāṅga, tvra, pāvakaprabha, ṣyāma, ghora, and dhruvaketu, as can be seen from the original Sanskrit verses. All these names can be found in the list of comets given by Varāhamihira31.

The word graha (from the root grah = to grasp or to seize) refers to any heavenly object, which can move and hence can ‘grasp’ or ‘seize’ a star. Thus, it can refer to a planet or to a comet. It is true that nowadays in Indian astronomy, the word graha denotes only a planet. But, Vyāsa leaves no doubt to the fact that in Bhīṣmaparvan, the word graha refers to a comet:

“grahau tāmrāruṇaśikhau prajvalitāvubhau” MB (VI. 3. 24)
‘the two grahās blazing with coppery red hair’.

The heavenly object graha blazing with red hair in the context here can only refer to a comet. It may be noted that the word comet itself derives from the Greek word for hair.

Vyāsa refers to son of Sun, sūryaputra, explicitly, but he also refers to the comets by the name of the parent planets, i.e., Jupiter to indicate the comet son of Jupiter. While this is quite according to the Sanskrit grammar, it is this notation that has caused so much confusion and most scholars have interpreted them literally as referring to planets alone (instead of the comets which must have been meant). This has resulted in inferring conflicting planetary positions, when in actuality no planetary position is indicated.

In the final segment, Vyāsa describes the omens, which indicate the destruction of the entire population:

caturdaśiṁ paṅcadaśiṁ bhūtapurvāṁ ca ṣoḍaṁśiṁ/

imāṅtu nābhijānāmi amāvāsyāṁ trayodaśīṁ// MB(VI. 3. 28)
candrasūryāvubhau grastāvekamāśe trayodaśīṁ/
aparvaṇi grahāvetau praṇāḥ saṁksapaiśyataḥ// MB(VI. 3. 29)

“I know New Moon coinciding with fourteenth, fifteenth and also on the sixteenth
day, but I have never known it coinciding with the thirteenth day. In one and the
same month, both the Sun and the Moon are eclipsed on the thirteenth. These ill-
timed eclipses indicate destruction of the people.”

This segment contains the famous reference to sequence of two eclipses within an
interval of thirteen days and in fact, almost identical to the omens described in
Atharvaveda Pariśiṣṭha:

yadi tu rāhurubhau śaśibhāskarau
grasati pakṣamanantaramantataḥ|
puruṣaśo'ṇitakardamavāhini
bhavati bhūr naca varṣati mādhavaḥ|| (AP 53.3.5)

The important planetary configurations

The important references to planets consist of those that are common to both Udyoga and
Bhīṣmaparvan-s and include the following

(i) conjunction of śani with rohini
(ii) retrograde motion of aṅgāraka just before reaching jyeṣṭhā
(iii) a lunar eclipse on the kārtika pūrṇima, followed by
(iv) a solar eclipse at jyeṣṭha.

These events lead to a unique year for the war. All other references in the epic are
consistent with this date.

VIII. Simulations using Planetarium Software and the date of the war

A search is made for the years in which there is a conjunction of Saturn (śani)
with Aldebaran (Rohini) between 3500 BCE and 500 CE. As Saturn takes an average of
29.5 years to go around the sun once, the event also repeats with the same period. There
are 137 such conjunctions during the interval specified above. A search is then made for
those years from among these 137 dates when Mars (aṅgāraka) is retrograde before
reaching Antares (Jyeṣṭhā). Since the retrograde motion of Mars repeats with the same
period as its synodic period, a spread of two years on either side of each of the dates was
considered in the search. The search reduced the set to just seventeen: 3271 BCE, 3067 BCE, 2830 BCE, 2625 BCE, 2388 BCE, 2183 BCE, 1946 BCE, 1741 BCE, 1503 BCE, 1299 BCE, 1061 BCE, 857 BCE, 620 BCE, 415 BCE, 28 CE, 233 CE and 470 CE, when Saturn was near Aldebaran and Mars executed a retrograde motion before reaching Antares. A search is then made for those years in which there is a lunar eclipse near Pleiades (i.e., on the KārtikaPūrṇima). This reduces the set to just two, 3067 BCE and 2183 BCE. It turns out that in both of these years the lunar eclipse is followed by a solar eclipse at jyeṣṭha. A sequence of ‘two eclipses within a period of 13 days’ also occurs in the two eclipse seasons. When one considers the fact that Bhīṣma passed away on the Māgha śukla aṣṭami, after the occurrence of winter solstice, a unique date results, for the winter solstice in January 13, 3066 BCE occurred on śuklapaṇcami, where as the winter solstice in 2182 BCE occurred on kṛṣṇacaturthi.

Thus a unique date of 3067 BCE for the date of the war emerges. The author has shown that this date is consistent with all the other astronomical references in the epic in several publications with the help of copious illustrations of star maps generated by Planetarium software. Some of them will be included as part of this essay by way of illustration

VIIIa. Illustrations

The star maps in figures 3-10 show that the astronomical events are reproduced. In figure 3, the day Kṛṣṇa starts on his diplomatic mission, it is clearly seen that moon is near revati, and śani is at rohini. Figure 4 shows the full moon in kārtika, it also happens to be a lunar eclipse day. At this time, Kṛṣṇa is busy with the peace talks in Hastināpura. In figure 5, Kṛṣṇa rides with Karṇa after the failure of the peace mission, it is uttaraphālguni. Seven days from that day, it will be amāvāsyā at jyeṣṭha. Kṛṣṇa sends the message to Bhīṣma and Droṇa to start the war rituals that day. Figure 6 shows the star map for that that day, which is also a solar eclipse day. The retrograde loop of Mars in that year is also shown in the figure. The retrograde motion of Mars before reaching Jyeṣṭha had occurred several months earlier. Figure 7 shows the day the war starts: moon is at bharani. Figure 8 shows the fourteenth day, when the war continues until the wee hours of the morning and stops when the moon rises. Figure 9 shows the last day of the
war, it is śravaṇa nakṣatra and Balarāma returns. Figure 10 shows the day of Bhiṣma’s expiry: śukla aṣṭamī, rohini nakṣatra.

The sheer volume of astronomical data and the consistency of the astronomical references reinforce conclusively the traditional belief that the war took place about five thousand years ago, and that the astronomical references are not clever interpolations of some latter day astronomer.
Figure 3. *Krṣṇa's* Mission for Peace: Departure on September 26, 3067 BCE.
Figure 4. Full Moon of Kārtika. Lunar eclipse Day September 29, 3067 BCE
Figure 5. *Karna rides with Krsna uttara phalguni nakṣatra* October 8, 3067 BCE
Figure 6. *Jyeṣṭha amāvāsyā* solar eclipse day. October 14, 3067 BCE.; Retroloop of Mars
Figure 7. War begins November 22, 3067 BCE. It is *Bharani* day
Figure 8. Fourteenth Day of War. Moon rising at 2:30 am seen just above the horizon
Figure 9. Last day of the war. Balarama returns on the \textit{sravana} Day.
Figure 10. Bhīṣma’s Expiry. Māgha śukla aṣṭami rohini nakṣatra. January 16, 3066 BCE
IX. Consistency with the dates of other Vedic texts

It will be interesting to verify astronomical information contained in other Vedic texts and determine the dates based on simulations using planetarium software and to see if these dates are consistent with the date of *Mahābhārata*.

For example, based on the astronomical information from *Rgveda*, Sengupta32 inferred a solar eclipse on July 26, 3928 BCE. Figure 11 shows the star map for this date. As verified by the software RedShift, it is a central solar eclipse, which occurred two days after the summer solstice that year, as per Sengupta’s conjecture. However, some caution must be exercised. As has been discussed in detail by the author, in the planetarium software, the positions of the planets and the stars are computed using the latest theories and information available and they are highly reliable. However, there are uncertainties when it comes to determining eclipses on dates extrapolated to 4000 BCE. These uncertainties which may amount to about 15 minutes when extrapolated to dates around 1000 CE, jump to more than 12 hours for the time of the occurrence of the eclipse when extrapolated to 3000 BCE, and even more when taken to 4000 BCE. The exact location of the eclipse and the exact time of visibility are uncertain, but the occurrence of the eclipse itself is certain. As a consequence, determining the date on the basis of eclipse data alone is risky. However, the eclipse data can be used as secondary information to confirm that it occurred on a particular date.

32 Sengupta (1947) p. 120.
Figure 11. Solar eclipse on July 26, 3928 BCE.
However, there are other astronomical data available in the *brāhmaṇa* texts. As already mentioned, *śatapatha brāhmaṇa* refers to *kṛttikā-s* rising exactly in the east. On the basis of simulations using the planetarium software\(^{33}\), the date of the event referred to has been shown to be 2925 +/- 100 BCE, quite in agreement with Dikshit.\(^{34}\) Considering that this text is attributed to *Yājñavalka*, a disciple of *Vaiśātipāyana*, who is an important narrator of the epic, the date of 3067 BCE for the war is consistent with the date of *śatapatha brāhmaṇa*. As shown\(^{35}\) earlier (also on the basis of simulations using the planetarium software) that Lagadha’s *vedāṅga jyotiṣa* should be dated to be about ~1800 BCE. The astronomy followed at the time of the *Mahābhārata* war is *vedāṅga jyotiṣa*, but is very much pre-Lagadha. The date of Lagadha’s *vedāṅga jyotiṣa* is also consistent with the date of the war. It may be noted in passing that *śatapatha brāhmaṇa* mentions both *Pariśit and Janamejaya*. This is an independent check on the date of the war. A passage in the *pañcaviṃśa brāhmaṇa* (XXV. 15.3) connects Janamejaya with the *sarpayāga* and has been referred to by Raychaudhuri.\(^{36}\) The date of a solar eclipse mentioned in the *pañcaviṃśa brāhmaṇa* text has been determined by Sengupta\(^{37}\) to be September 14, 2451 BCE. This date is consistent with the date of the war and the date of the other *brāhmaṇa* texts and confirmed by the star map for this day in Figure 12.

\(^{34}\) Dikshit, S. B.
\(^{36}\) Raychoudhuri, H. C., (1923), Political History of Ancient India, University of Calcutta, Calcutta, p.10.
X. Conclusions

Many of the prevalent notions about Vedic astronomy have been reexamined and are found to be modified. All the Nakṣatras have been known since ṛgVeda, and not just a few. There is not a chronological development in the list of Nakṣatras. The scheme of naming months on the basis of the full moon occurring near a Nakṣatra also goes back to ṛgVeda. That means the astronomical knowledge is truly ancient. A new set of identification for the Vedic Nakṣatras has been carried out. The newly identified bright stars are closer to the ecliptic and are better suited to act as markers for the paths of the sun and the moon. These Nakṣatras in conjunction with astronomical information from the Vedic texts can be used to determine the dates. The date of Śatapatha Brāhmaṇa as determined confirms Dixit’s theory. A unique date for the Mahābhārata war as determined agrees with Professor Raghavan’s. The date of Pañcaviśā Brāhmaṇa as determined by Sengupta has been confirmed and is consistent with the other dates discussed in the paper. These provide the elements of chronological background in our quest to understand the role of the river Sarasvati and its influence on Hindu civilization.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Atharvaveda Pariśīṭha</td>
</tr>
<tr>
<td>MB</td>
<td>Mahabharata Critical Edition</td>
</tr>
<tr>
<td>MNU</td>
<td>Mahānārāyaṇopaniṣat</td>
</tr>
<tr>
<td>RJ</td>
<td>ṛgjyotīṣa</td>
</tr>
<tr>
<td>SB</td>
<td>Śatapatha Brāhmaṇa</td>
</tr>
<tr>
<td>VJ</td>
<td>Vedāṅgajyotīṣa</td>
</tr>
</tbody>
</table>
List of illustrations

Figure 1. Winter Solstice in 1752 BCE
Figure 2. Full Moon after the Winter Solstice in 1752 BCE

Figure 3. Kṛṣṇa’s Mission for Peace: Departure on September 26, 3067 BCE.

Figure 4. Full Moon of Kārtika. Lunar eclipse Day September 29, 3067 BCE

Figure 5. Karṇa rides with Kṛṣṇa uttara phālguni nakṣatra October 8, 3067 BCE

Figure 6. Jyeṣṭha amāvāsyā solar eclipse day. October 14, 3067 BCE.; Retroloop of Mars

Figure 7. War begins November 22, 3067 BCE. It is Bharaṇī day

Figure 8. Fourteenth Day of War. Moon rising at 2:30 am seen just above the horizon

Figure 9. Last day of the war. Balarama returns on the Śravaṇa Day.

Figure 10. Bhiṣma’s Expiry. Māgha śukla aṣṭami rohini nakṣatra. January 16, 3066 BCE

Figure 11. Solar eclipse on July 26, 3928 BCE.

Figure 12. Solar Eclipse on September 14, 2451 BCE
Bibliography

Basham, A.L., (1953), *The Wonder that was India*, Grove Press Inc., New York
Kamath, S. U., (Bangalore, 2004), (Editor) The Date of the Mahabharata War Based on Astronomical Data, Mythic Society
Raychaudhuri, H. C., (1923), *Political History of Ancient India*, University of Calcutta, Calcutta, p. 10